几个文本向量化的模型 text embedding

创建日期: 2025-01-07 16:38 | 作者: 风波 | 浏览次数: 13 | 分类: AI
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('aspire/acge_text_embedding') # 或者是 git clone 下来的目录的绝对路径
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
13 浏览
0 评论